Notice: This is the official website of the All Empires History Community (Reg. 10 Feb 2002)

  FAQ FAQ  Forum Search   Register Register  Login Login

Science and Nature News Redux

 Post Reply Post Reply Page  <1 6465666768 348>
Author
tjadams View Drop Down
Chieftain
Chieftain
Avatar
Suspended, go back to historum

Joined: 17-Apr-2011
Location: Texas
Online Status: Offline
Posts: 1188
  Quote tjadams Quote  Post ReplyReply Direct Link To This Post Topic: Science and Nature News Redux
    Posted: 20-Mar-2012 at 13:19

Go-to meteorite guy Reveals Out-of-this-world Finds

Published March 19, 2012-Associated Press


SEATTLE –  A chance meeting between a pair of treasure-hunting brothers and a geology professor affiliated with University of Washington has led to the discovery of some the most extraordinary and valuable meteorites in history.  Long before he met the wealthy brothers, before he traveled to Morocco and received extraterrestrial nuggets in FedEx packages, Tony Irving got to touch the moon, The Seattle Times reported in Sunday's newspaper.

The Australian-born geochemist affiliated with the University of Washington spent his early career working with lunar fragments from the Apollo missions. Then, life being what it is, he returned to studying earthly matters -- rocks that rise from the planet's mantle during volcanic eruptions. But a chance meeting brought him full-circle.

In the late 1990s, two adventurous computer entrepreneurs with a passion for metal-detecting and gold-panning brought Irving a strange rock. They thought they'd stumbled upon material from space.

They hadn't, but Irving and brothers Adam and Greg HupDe, of Everett, hit it off. The trio grew into an unorthodox team, becoming central players in a thriving international subculture -- an obscure band of treasure hunters who scour the planet collecting, buying, selling and studying meteorites.


Read more: http://www.foxnews.com/scitech/2012/03/19/go-to-meteorite-guy-reveals-out-this-world-finds/#ixzz1pgNHfcdh



Back to Top
tjadams View Drop Down
Chieftain
Chieftain
Avatar
Suspended, go back to historum

Joined: 17-Apr-2011
Location: Texas
Online Status: Offline
Posts: 1188
  Quote tjadams Quote  Post ReplyReply Direct Link To This Post Posted: 20-Mar-2012 at 13:21

Iconic Bison Returning to Repopulate Parts of US West

Published March 19, 2012-Associated Press


BILLINGS, Montana –  Sixty-four bison from Yellowstone National Park were set to arrive Monday on an American Indian reservation under a long-stalled plan to repopulate parts of the U.S. West with the iconic animals.

Tribal and state officials signed an agreement late Friday allowing the transfer to take place, said Robert Magnan with the Fort Peck Fish and Game Department in Montana.

The shipment date was kept quiet until it was under way to avoid a court injunction, he said. A group of Montana landowners and property groups filed a lawsuit in state district court in January seeking to stop the transfer.

Several prior attempts to relocate the animals failed because of opposition from cattle producers and difficulty finding public or tribal land suitable for the bison.


Read more: http://www.foxnews.com/scitech/2012/03/19/iconic-bison-returning-to-repopulate-parts-us-west/#ixzz1pgNozQSf
 

Back to Top
tjadams View Drop Down
Chieftain
Chieftain
Avatar
Suspended, go back to historum

Joined: 17-Apr-2011
Location: Texas
Online Status: Offline
Posts: 1188
  Quote tjadams Quote  Post ReplyReply Direct Link To This Post Posted: 20-Mar-2012 at 13:24

Original Einstein Manuscripts show First Details of E=MC2

Published March 20, 2012-Associated Press


JERUSALEM –  Albert Einstein's complete archives -- from personal correspondence with half a dozen lovers to notebooks scribbled with his groundbreaking scientific research -- are going online for the first time.

The Hebrew University of Jerusalem, which owns the German Jewish physicist's papers, is pulling never-before seen items from its climate-controlled safe, photographing them in high resolution and posting them on the Internet -- offering the public a nuanced and fuller portrait of the man behind the scientific genius.

Only 900 manuscript images, and an incomplete catalog listing just half of the archive's contents, had been posted online since 2003. Now, with a grant from the Polonsky Foundation UK, which previously helped digitize Isaac Newton's papers, all 80,000 items from the Einstein collection have been cataloged and enhanced with cross referencing technology.



Read more: http://www.foxnews.com/scitech/2012/03/20/original-einstein-manuscripts-hit-internet/#ixzz1pgOHEmB8
Back to Top
TheAlaniDragonRising View Drop Down
AE Moderator
AE Moderator
Avatar
Spam Fighter

Joined: 09-May-2011
Online Status: Offline
Posts: 6084
  Quote TheAlaniDragonRising Quote  Post ReplyReply Direct Link To This Post Posted: 20-Mar-2012 at 16:37

Oil from Deepwater Horizon Disaster Entered Food Chain in the Gulf of Mexico

Oil rig in Gulf of Mexico.

Since the explosion on the BP Deepwater Horizon drilling rig in the Gulf of Mexico on April 20, 2010, scientists have been working to understand the impact that this disaster has had on the environment. For months, crude oil gushed into the water at a rate of approximately 53,000 barrels per day before the well was capped on July 15, 2010. A new study confirms that oil from the Macondo well made it into the ocean's food chain through the tiniest of organisms, zooplankton.

Tiny drifting animals in the ocean, zooplankton are useful to track oil-derived pollution. They serve as food for baby fish and shrimp and act as conduits for the movement of oil contamination and pollutants into the food chain. The study confirms that not only did oil affect the ecosystem in the Gulf during the blowout, but it was still entering the food web after the well was capped.

Oil, which is a complex mixture of hydrocarbons and other chemicals, contains polycyclic aromatic hydrocarbons (PAHs), which can be used to fingerprint oil and determine its provenance. The researchers were able to identify the signature unique to the Deep Water Horizon well in the Gulf of Mexico.

"Our research helped to determine a 'fingerprint' of the Deepwater Horizon spill -- something that other researchers interested the spill may be able to use," said Dr. Siddhartha Mitra of Eastern Carolina University. "Furthermore, our work demonstrated that zooplankton in the Northern Gulf of Mexico accumulated toxic compounds derived from the Macondo well."

The team's research indicates that the fingerprint of the Deepwater Horizon oil spill could be found in some zooplankton in the Gulf of Mexico ecosystem at low levels, as much as a month after the leaking wellhead was capped. In addition, the extent of the contamination seemed to be patchy. Some zooplankton at certain locations far removed from the spill showed evidence of contamination, whereas zooplankton in other locations, sometimes near the spill, showed lower indications of exposure to the oil-derived pollutants.

"Traces of oil in the zooplankton prove that they had contact with the oil and the likelihood that oil compounds may be working their way up the food chain," said Dr. Michael Roman of the University of Maryland Center for Environmental Science........

http://www.sciencedaily.com/releases/2012/03/120320142100.htm

What a handsome figure of a dragon. No wonder I fall madly in love with the Alani Dragon now, the avatar, it's a gorgeous dragon picture.
Back to Top
TheAlaniDragonRising View Drop Down
AE Moderator
AE Moderator
Avatar
Spam Fighter

Joined: 09-May-2011
Online Status: Offline
Posts: 6084
  Quote TheAlaniDragonRising Quote  Post ReplyReply Direct Link To This Post Posted: 20-Mar-2012 at 16:44

Explosive Stars With Good Table Manners

M101 These images from Swift's Ultraviolet/Optical Telescope (UVOT) show the nearby spiral galaxy M101 before and after the appearance of SN 2011fe (circled, right), which was discovered on Aug. 24, 2011. At a distance of 21 million light-years, it was the nearest Type Ia supernova since 1986. Left: View constructed from images taken in March and April 2007. Right: The supernova was so bright that most UVOT exposures were short, so this view includes imagery from August through November 2011 to better show the galaxy.

An exploding star known as a Type Ia supernova plays a key role in our understanding of the universe. Studies of Type Ia supernovae led to the discovery of dark energy, which garnered the 2011 Nobel Prize in Physics. Yet the cause of this variety of exploding star remains elusive.

All evidence points to a white dwarf that feeds off its companions star, gaining mass, growing unstable, and ultimately detonating. But does that white dwarf draw material from a Sun-like star, an evolved red giant star, or from a second white dwarf? Or is something more exotic going on? Clues can be collected by searching for "cosmic crumbs" left over from the white dwarf's last meal.

In two comprehensive studies of SN 2011fe -- the closest Type Ia supernova in the past two decades -- there is new evidence that indicates that the white dwarf progenitor was a particularly picky eater, leading scientists to conclude that the companion star was not likely to be a Sun-like star or an evolved giant.

"It's hard to understand how a white dwarf could eat itself to death while showing such good table manners," said Alicia Soderberg of the Harvard-Smithsonian Center for Astrophysics (CfA).

Soderberg and her colleagues examined SN 2011fe with a suite of instruments in wavelengths ranging from X-rays to radio. They saw no sign of stellar material recently devoured by the white dwarf. Instead, the explosion occurred in a remarkably clean environment.

"This white dwarf was a tidy eater," said Laura Chomiuk of the CfA, lead author of one of the two papers.

Additional studies using NASA's Swift satellite, which examined a large number of more distant Type Ia supernovae, appear to rule out giant stars as companions for the white-dwarf progenitors.

Taken together, these studies suggest that Type Ia supernovae likely originate from a more exotic scenario, possibly the explosive merger of two white dwarfs........

http://www.sciencedaily.com/releases/2012/03/120320142056.htm

What a handsome figure of a dragon. No wonder I fall madly in love with the Alani Dragon now, the avatar, it's a gorgeous dragon picture.
Back to Top
TheAlaniDragonRising View Drop Down
AE Moderator
AE Moderator
Avatar
Spam Fighter

Joined: 09-May-2011
Online Status: Offline
Posts: 6084
  Quote TheAlaniDragonRising Quote  Post ReplyReply Direct Link To This Post Posted: 20-Mar-2012 at 16:49

Super-Earth Unlikely Able to Transfer Life to Other Planets

Planets of the Gliese 581 System. This artist's conception shows the inner four planets of the Gliese 581 system and their host star, a red dwarf star only 20 light years away from Earth. The large planet in the foreground is the newly discovered GJ 581g, which has a 37-day orbit right in the middle of the star's habitable zone and is only three to four times the mass of Earth, with a diameter 1.2 to 1.4 times that of Earth.

While scientists believe conditions suitable for life might exist on the so-called "super-Earth" in the Gliese 581 system, it's unlikely to be transferred to other planets within that solar system.

"One of the big scientific questions is how did life get started and how did it spread through the universe," said Jay Melosh, distinguished professor of earth and atmospheric sciences. "That question used to be limited to just the Earth, but we now know in our solar system there is a lot of exchange that takes place, and it's quite possible life started on Mars and came to Earth. There's also been a great deal of discussion about the possible spread of life in the universe from star to star."

Moon rocks and Mars meteorites have been found on Earth, which led Melosh to previously suggest living microbes could be exchanged among planets in a similar manner.

A Purdue research team has found that, in contrast to our own solar system, the exchange of living microbes between "super-Earth" and planets in that solar system is not likely to occur.

Laci Brock, a student studying interdisciplinary physics and planetary science, and Melosh will present those findings March 20 at the 43rd Lunar and Planetary Science Conference in The Woodlands, Texas.

Brock examined the Gliese 581 planetary system because Planet d, known as super-Earth, falls in a "habitable zone" where liquid water could possibly exist.

"Laci has found the somewhat surprising result that it is very difficult for materials to spread throughout that system in the same way it could take place in our solar system," Melosh said.

All four planets found in Gliese 581 are within close proximity to their central star, which results in large orbital velocities, Brock said. However, the initial velocity of material leaving Planet d is not enough to allow exchanges among planets.......

http://www.sciencedaily.com/releases/2012/03/120320115623.htm

What a handsome figure of a dragon. No wonder I fall madly in love with the Alani Dragon now, the avatar, it's a gorgeous dragon picture.
Back to Top
TheAlaniDragonRising View Drop Down
AE Moderator
AE Moderator
Avatar
Spam Fighter

Joined: 09-May-2011
Online Status: Offline
Posts: 6084
  Quote TheAlaniDragonRising Quote  Post ReplyReply Direct Link To This Post Posted: 20-Mar-2012 at 16:54

Greenhouse Gas Can Find a Home Underground

The MIT researchers analyzed several specific deep saline aquifers in the United States and determined their total potential storage capacity by analyzing how the liquified gas would spread from a specific set of deep injection wells.

 A new study by researchers at MIT shows that there is enough capacity in deep saline aquifers in the United States to store at least a century's worth of carbon dioxide emissions from the nation's coal-fired powerplants. Though questions remain about the economics of systems to capture and store such gases, this study addresses a major issue that has overshadowed such proposals.

The MIT team's analysis -- led by Ruben Juanes, the ARCO Associate Professor in Energy Studies in the Department of Civil and Environmental Engineering, and part of the doctoral thesis work of graduate students Christopher MacMinn PhD '12 and Michael Szulczewski -- is published this week in the Proceedings of the National Academy of Sciences.

Coal-burning powerplants account for about 40 percent of worldwide carbon emissions, so climate change "will not be addressed unless we address carbon dioxide emissions from coal plants," Juanes says. "We should do many different things" such as developing new, cleaner alternatives, he says, "but one thing that's not going away is coal," because it's such a cheap and widely available source of power.

Efforts to curb greenhouse gases have largely focused on the search for practical, economical sources of clean energy, such as wind or solar power. But human emissions are now so vast that many analysts think it's unlikely that these technologies alone can solve the problem. Some have proposed systems for capturing emissions -- mostly carbon dioxide from the burning of fossil fuels -- then compressing and storing the waste in deep geological formations. This approach is known as carbon capture and storage, or CCS.

One of the most promising places to store the gas is in deep saline aquifers: those more than half a mile below the surface, far below the freshwater sources used for human consumption and agriculture. But estimates of the capacity of such formations in the United States have ranged from enough to store just a few years' worth of coal-plant emissions up to many thousands of years' worth.

The reason for the huge disparity in estimates is twofold. First, because deep saline aquifers have no commercial value, there has been little exploration to determine their extent. Second, the fluid dynamics of how concentrated, liquefied carbon dioxide would spread through such formations is very complex and hard to model. Most analyses have simply estimated the overall volume of the formations, without considering the dynamics of how the CO2 would infiltrate them.......

http://www.sciencedaily.com/releases/2012/03/120319163809.htm

What a handsome figure of a dragon. No wonder I fall madly in love with the Alani Dragon now, the avatar, it's a gorgeous dragon picture.
Back to Top
Don Quixote View Drop Down
Tsar
Tsar

Retired AE Moderator

Joined: 29-Dec-2010
Online Status: Offline
Posts: 4734
  Quote Don Quixote Quote  Post ReplyReply Direct Link To This Post Posted: 22-Mar-2012 at 04:22
Certain personality traits may have biological base, as opposed to pure mental one:
"...A personality profile marked by overly gregarious yet anxious behavior is rooted in abnormal development of a circuit hub buried deep in the front center of the brain, say scientists at the National Institutes of Health. They used three different types of brain imaging to pinpoint the suspect brain area in people with Williams syndrome, a rare genetic disorder characterized by these behaviors. Matching the scans to scores on a personality rating scale revealed that the more an individual with Williams syndrome showed these personality/temperament traits, the more abnormalities there were in the brain structure, called the insula....

"Scans of the brain's tissue composition, wiring, and activity produced converging evidence of genetically-caused abnormalities in the structure and function of the front part of the insula and in its connectivity to other brain areas in the circuit," explained Karen Berman, M.D., of the NIH's National Institute of Mental Health (NIMH). ...
Evidence suggests that genes influence our temperament and the development of mental disorders via effects on brain circuits that regulate behavior. Yet direct demonstration of this in humans has proven elusive. Since the genetic basis of Williams syndrome is well known, it offers a unique opportunity to explore such effects with neuroimaging, reasoned the researchers...."
http://www.medicalnewstoday.com/releases/243165.php
Back to Top
Centrix Vigilis View Drop Down
Emperor
Emperor
Avatar

Joined: 18-Aug-2006
Location: The Llano
Online Status: Offline
Posts: 7392
  Quote Centrix Vigilis Quote  Post ReplyReply Direct Link To This Post Posted: 22-Mar-2012 at 13:36
Geologists Discover New Class of Landform -- On Mars
"Absence of evidence is not evidence of absence"

S. T. Friedman


Pilger's law: 'If it's been officially denied, then it's probably true'

Back to Top
TheAlaniDragonRising View Drop Down
AE Moderator
AE Moderator
Avatar
Spam Fighter

Joined: 09-May-2011
Online Status: Offline
Posts: 6084
  Quote TheAlaniDragonRising Quote  Post ReplyReply Direct Link To This Post Posted: 22-Mar-2012 at 14:57

New Understanding of Earth's Mantle Beneath the Pacific Ocean

The generation of partially molten rock locally sharpens the lithosphere-asthenosphere boundary (LAB), allowing seismic waves to reflect from the interface. Shear waves from an earthquake (star) travel through the Earth and reflect from the surface, and also where melt has ponded at the base of the lithosphere. The waves are recorded by seismometers (blue inverted triangle) deployed around the globe, providing a complete view of the LAB beneath the Pacific. Regions without melt will not produce a deeper reflection, signifying that melt is not the primary mechanism for weakening of rock in the asthenosphere.

Scientists have long speculated about why there is a large change in the strength of rocks that lie at the boundary between two layers immediately under Earth's crust: the lithosphere and underlying asthenosphere. Understanding this boundary is central to our knowledge of plate tectonics and thus the formation and evolution of our planet as we know it today. A new technique for observing this transition, particularly in the portion of Earth's mantle that lies beneath the Pacific Ocean basin, has led Carnegie and NASA Goddard scientist Nick Schmerr to new insight on the origins of the lithosphere and asthenosphere.

His work is published March 23 inScience.

The lithosphere-asthenosphere boundary, or LAB, represents the transition from hot, convecting mantle asthenosphere to overlying cold and rigid lithosphere. The oceanic lithosphere thickens as it cools over time, and eventually sinks back into the mantle at Earth's so-called subduction zones. Studies of seismic waves traveling across the LAB show higher wave speeds in the lithosphere and lower speeds in the asthenosphere. In some regions, seismic waves indicate an abrupt 5 to 10% decrease in wave speeds between 35 and 120 km depth, forming a boundary known as the Gutenberg discontinuity. In many cases, the depth of the Gutenberg discontinuity is roughly coincident with the expected depth of the LAB, leading to the suggestion that the two boundaries are closely inter-related.

However, temperature alone cannot fully explain the abrupt change in the mechanical and seismic properties that have been observed at the Gutenberg discontinuity. This has led many scientists to suggest that other factors--such as the presence of molten rock, water, and/or a decrease in the grain size of minerals--may also play important roles.

Older techniques made imaging seismic discontinuities shallower than 100 kilometers quite difficult, and regions beneath the oceans could only be accessed where seismic stations were installed on ocean islands or by deploying ocean bottom seismometers, giving an incomplete picture of where the Gutenberg occurs beneath the Pacific Ocean.

But an innovative observation technique -- one that incorporates seismic waves that sample beneath remote regions of Earth at higher frequencies, and new signal processing techniques--enabled Schmerr to hone in on the Gutenberg discontinuity.......

http://www.sciencedaily.com/releases/2012/03/120322142159.htm

What a handsome figure of a dragon. No wonder I fall madly in love with the Alani Dragon now, the avatar, it's a gorgeous dragon picture.
Back to Top
TheAlaniDragonRising View Drop Down
AE Moderator
AE Moderator
Avatar
Spam Fighter

Joined: 09-May-2011
Online Status: Offline
Posts: 6084
  Quote TheAlaniDragonRising Quote  Post ReplyReply Direct Link To This Post Posted: 22-Mar-2012 at 15:00

Somatic Stem Cells Obtained from Skin Cells; Pluripotency 'Detour' Skipped

Immunofluorescence microscopy image of the induced neural stem cells using antibodies against two neural stem cell markers SSEA1 (red colour) and Olig2 (green colour).

Breaking new ground, scientists at the Max Planck Institute for Molecular Biomedicine in Münster, Germany, have succeeded in obtaining somatic stem cells from fully differentiated somatic cells. Stem cell researcher Hans Schöler and his team took skin cells from mice and, using a unique combination of growth factors while ensuring appropriate culturing conditions, have managed to induce the cells' differentiation into neuronal somatic stem cells.

"Our research shows that reprogramming somatic cells does not require passing through a pluripotent stage," explains Schöler. "Thanks to this new approach, tissue regeneration is becoming a more streamlined -- and safer -- process."

Up until now, pluripotent stem cells were considered the 'be-all and end-all' of stem cell science. Historically, researchers have obtained these 'jack-of-all-trades' cells from fully differentiated somatic cells. Given the proper environmental cues, pluripotent stem cells are capable of differentiating into every type of cell in the body, but their pluripotency also holds certain disadvantages, which preclude their widespread application in medicine. According to Schöler, "pluripotent stem cells exhibit such a high degree of plasticity that under the wrong circumstances they may form tumours instead of regenerating a tissue or an organ." Schöler's somatic stem cells offer a way out of this dilemma: they are 'only' multipotent, which means that they cannot give rise to all cell types but merely to a select subset of them -- in this case, a type of cell found in neural tissue -- a property, which affords them an edge in terms of their therapeutic potential.

To allow them to interconvert somatic cells into somatic stem cells, the Max Planck researchers cleverly combined a number of different growth factors, proteins that guide cellular growth. "One factor in particular, called Brn4, which had never been used before in this type of research, turned out to be a genuine 'captain' who very quickly and efficiently took command of his ship -- the skin cell -- guiding it in the right direction so that it could be converted into a neuronal somatic stem cell," explains Schöler. This interconversion turns out to be even more effective if the cells, stimulated by growth factors and exposed to just the right environmental conditions, divide more frequently. "Gradually, the cells lose their molecular memory that they were once skin cells," explains Schöler. It seems that even after only a few cycles of cell division the newly produced neuronal somatic stem cells are practically indistinguishable from stem cells normally found in the tissue......

http://www.sciencedaily.com/releases/2012/03/120322131502.htm


What a handsome figure of a dragon. No wonder I fall madly in love with the Alani Dragon now, the avatar, it's a gorgeous dragon picture.
Back to Top
TheAlaniDragonRising View Drop Down
AE Moderator
AE Moderator
Avatar
Spam Fighter

Joined: 09-May-2011
Online Status: Offline
Posts: 6084
  Quote TheAlaniDragonRising Quote  Post ReplyReply Direct Link To This Post Posted: 22-Mar-2012 at 16:11

Scientists Wrest Partial Control of a Memory

undefined
Mouse. Scripps Research Institute scientists and their colleagues have successfully harnessed neurons in mouse brains, allowing them to at least partially control a specific memory.

Scripps Research Institute scientists and their colleagues have successfully harnessed neurons in mouse brains, allowing them to at least partially control a specific memory. Though just an initial step, the researchers hope such work will eventually lead to better understanding of how memories form in the brain, and possibly even to ways to weaken harmful thoughts for those with conditions such as schizophrenia and post traumatic stress disorder.

The results are reported in the March 23, 2012 issue of the journal Science.

Researchers have known for decades that stimulating various regions of the brain can trigger behaviors and even memories. But understanding the way these brain functions develop and occur normally -- effectively how we become who we are -- has been a much more complex goal.

"The question we're ultimately interested in is: How does the activity of the brain represent the world?" said Scripps Research neuroscientist Mark Mayford, who led the new study. "Understanding all this will help us understand what goes wrong in situations where you have inappropriate perceptions. It can also tell us where the brain changes with learning."

On-Off Switches and a Hybrid Memory

As a first step toward that end, the team set out to manipulate specific memories by inserting two genes into mice. One gene produces receptors that researchers can chemically trigger to activate a neuron. They tied this gene to a natural gene that turns on only in active neurons, such as those involved in a particular memory as it forms, or as the memory is recalled. In other words, this technique allows the researchers to install on-off switches on only the neurons involved in the formation of specific memories.

For the study's main experiment, the team triggered the "on" switch in neurons active as mice were learning about a new environment, Box A, with distinct colors, smells and textures.

Next the team placed the mice in a second distinct environment -- Box B -- after giving them the chemical that would turn on the neurons associated with the memory for Box A. The researchers found the mice behaved as if they were forming a sort of hybrid memory that was part Box A and part Box B. The chemical switch needed to be turned on while the mice were in Box B for them to demonstrate signs of recognition. Alone neither being in Box B nor the chemical switch was effective in producing memory recall.

"We know from studies in both animals and humans that memories are not formed in isolation but are built up over years incorporating previously learned information," Mayford said. "This study suggests that one way the brain performs this feat is to use the activity pattern of nerve cells from old memories and merge this with the activity produced during a new learning session."......

http://www.sciencedaily.com/releases/2012/03/120322161251.htm

What a handsome figure of a dragon. No wonder I fall madly in love with the Alani Dragon now, the avatar, it's a gorgeous dragon picture.
Back to Top
TheAlaniDragonRising View Drop Down
AE Moderator
AE Moderator
Avatar
Spam Fighter

Joined: 09-May-2011
Online Status: Offline
Posts: 6084
  Quote TheAlaniDragonRising Quote  Post ReplyReply Direct Link To This Post Posted: 22-Mar-2012 at 16:16

Cylinder Hides Contents and Makes Them Invisible to Magnetic Fields

Experimental set-up

 Universitat Autonoma de Barcelona researchers, in collaboration with an experimental group from the Academy of Sciences of Slovakia, have created a cylinder which hides contents and makes them invisible to magnetic fields. The device was built using superconductor and ferromagnetic materials available on the market.

The cylinder is built using high temperature superconductor material, easily refrigerated with liquid nitrogen and covered in a layer of iron, nickel and chrome. This simple and accessible formula has been used to create a true invisibility cloak.

The cylinder is invisible to magnetic fields and represents a step towards the invisibility of light -- an electromagnetic wave. Never before had a device been created with such simplicity or exactness in theoretical calculations.

The invention is published this week in the journal Science.

Researchers at UAB, led by Àlvar Sánchez, lecturer of the Department of Physics, came up with the mathematical formula to design the device. Using an extraordinarily simple equation scientists described a cylinder which in theory is absolutely undetectable to magnetic fields from the outside, and maintains everything in its interior completely isolated from these fields as well.

Equation in hand and with the aim of building the device, UAB researchers contacted the laboratory specializing in the precise measurement of magnetic fields at the Institute of Electrical Engineering of the Slovak Academy of Sciences in Bratislava. Only a few months later the experimental results were clear. The cylinder was completely invisible to magnetic fields, made invisible whatever content was found in its interior and fully isolated it from external fields.

The superconductor layer of the cylinder prevents the magnetic field from reaching the interior, but distorts the external field and thus makes it detectable. To avoid detection, the ferromagnetic outer layer made of iron, nickel and chrome, produce the opposite effect. It attracts the magnetic field lines and compensates the distortion created by the superconductor, but without allowing the field to reach the interior. The global effect is a completely non-existent magnetic field inside the cylinder and absolutely no distortions in the magnetic field outside......

http://www.sciencedaily.com/releases/2012/03/120322151528.htm

What a handsome figure of a dragon. No wonder I fall madly in love with the Alani Dragon now, the avatar, it's a gorgeous dragon picture.
Back to Top
TheAlaniDragonRising View Drop Down
AE Moderator
AE Moderator
Avatar
Spam Fighter

Joined: 09-May-2011
Online Status: Offline
Posts: 6084
  Quote TheAlaniDragonRising Quote  Post ReplyReply Direct Link To This Post Posted: 22-Mar-2012 at 16:27

Geologists Discover New Class of Landform -- On Mars

Images from the High Resolution Imaging Science Experiment on NASA's Mars Reconnaissance Orbiter show exposed rock strata in periodic bedrock ridges on the floor of the West Candor Chasma on Mars.

An odd, previously unseen landform could provide a window into the geological history of Mars, according to new research by University of Washington geologists.

They call the structures periodic bedrock ridges. The ridges look like sand dunes but, rather than being made from material piled up by the wind, the scientists say the ridges actually form from wind erosion of bedrock.

"These bedforms look for all the world like sand dunes but they are carved into hard rock by wind," said David Montgomery, a UW professor of Earth and space sciences. It is something there are not many analogs for on Earth."

He believes the ridges, while still bedrock, are composed of a softer, more erodible material than typical bedrock and were formed by an unusual form of wind erosion that occurs perpendicular to the prevailing wind rather than in the same direction.

He contrasts the ridges with another bedrock form called a yardang, which has been carved over time by headwinds. A yardang has a wide, blunt leading edge in the face of the wind, and its sides are tapered so that it resembles a teardrop.

In the case of periodic bedrock ridges, Montgomery believes high surface winds on Mars are deflected into the air by a land formation, and they erode the bedrock in the area where they settle back to the surface.

Spacing between ridges depends on how long it takes for the winds to come back to the surface, and that is determined by the strength of the wind, the size of the deflection and the density of the atmosphere, he said......

http://www.sciencedaily.com/releases/2012/03/120322131351.htm

What a handsome figure of a dragon. No wonder I fall madly in love with the Alani Dragon now, the avatar, it's a gorgeous dragon picture.
Back to Top
TheAlaniDragonRising View Drop Down
AE Moderator
AE Moderator
Avatar
Spam Fighter

Joined: 09-May-2011
Online Status: Offline
Posts: 6084
  Quote TheAlaniDragonRising Quote  Post ReplyReply Direct Link To This Post Posted: 22-Mar-2012 at 16:31

Runaway Planets Zoom at a Fraction of Light Speed

undefined
In this artist’s conception, a runaway planet zooms through interstellar space. New research suggests that the supermassive black hole at our galaxy’s center can fling planets outward at relativistic speeds. Eventually, such worlds will escape the Milky Way and travel through the lonely intergalactic void. In this illustration, a glowing volcano on the planet’s surface hints at active plate tectonics that may keep the planet warm.

Seven years ago, astronomers boggled when they found the first runaway star flying out of our galaxy at a speed of 1.5 million miles per hour. The discovery intrigued theorists, who wondered: If a star can get tossed outward at such an extreme velocity, could the same thing happen to planets?

New research shows that the answer is yes. Not only do runaway planets exist, but some of them zoom through space at a few percent of the speed of light -- up to 30 million miles per hour.

"These warp-speed planets would be some of the fastest objects in our galaxy. If you lived on one of them, you'd be in for a wild ride from the center of the galaxy to the Universe at large," said astrophysicist Avi Loeb of the Harvard-Smithsonian Center for Astrophysics.

"Other than subatomic particles, I don't know of anything leaving our galaxy as fast as these runaway planets," added lead author Idan Ginsburg of Dartmouth College.

Such speedy worlds, called hypervelocity planets, are produced in the same way as hypervelocity stars. A double-star system wanders too close to the supermassive black hole at the galactic center. Strong gravitational forces rip the stars from each other, sending one away at high speed while the other is captured into orbit around the black hole.

For this study, the researchers simulated what would happen if each star had a planet or two orbiting nearby. They found that the star ejected outward could carry its planets along for the ride. The second star, as it's captured by the black hole, could have its planets torn away and flung into the icy blackness of interstellar space at tremendous speeds.

A typical hypervelocity planet would slingshot outward at 7 to 10 million miles per hour. However, a small fraction of them could gain much higher speeds under ideal conditions.

Current instruments can't detect a lone hypervelocity planet since they are dim, distant, and very rare. However, astronomers could spot a planet orbiting a hypervelocity star by watching for the star to dim slightly when the planet crosses its face in a transit.

For a hypervelocity star to carry a planet with it, that planet would have to be in a tight orbit. Therefore, the chances of seeing a transit would be relatively high, around 50 percent.

"With one-in-two odds of seeing a transit, if a hypervelocity star had a planet, it makes a lot of sense to watch for them," said Ginsburg......

http://www.sciencedaily.com/releases/2012/03/120322113604.htm

What a handsome figure of a dragon. No wonder I fall madly in love with the Alani Dragon now, the avatar, it's a gorgeous dragon picture.
Back to Top
TheAlaniDragonRising View Drop Down
AE Moderator
AE Moderator
Avatar
Spam Fighter

Joined: 09-May-2011
Online Status: Offline
Posts: 6084
  Quote TheAlaniDragonRising Quote  Post ReplyReply Direct Link To This Post Posted: 22-Mar-2012 at 16:39

How the Alphabet of Data Processing Is Growing: Flying 'Qubits' Generated

Electron one-way street. In this dual channel, electrons (blue) move on defined, parallel paths. Only one single electron fits through at a time. By means of tunnel coupling, the electron can switch back and forth between the channels, thus occupying two different states, which are denoted by “arrow up” and “arrow down”. The electron virtually flies in both tracks at the same time, its two states overlap.

The alphabet of data processing could include more elements than the "0" and "1" in future. An international research team has achieved a new kind of bit with single electrons, called quantum bits, or qubits. With them, considerably more than two states can be defined. So far, quantum bits have only existed in relatively large vacuum chambers. The team has now generated them in semiconductors. They have put an effect in practice, which the RUB physicist Prof. Dr. Andreas Wieck had already theoretically predicted 22 years ago. This represents another step along the path to quantum computing.

Together with colleagues from Grenoble and Tokyo, Wieck from the Chair of Applied Solid State Physics reports on the results in the journalNature Nanotechnology.

Conventional bits

The basic units of today's data processing are the bit states "0" and "1," which differ in their electrical voltage. To encode these states, only the charge of the electrons is crucial. "Electrons also have other properties though" says Wieck, and these are exactly what you need for quantum bits. "The extension from bits to quantum bits can dramatically increase the computational power of computers" says the physicist.

The new bit generation

A quantum bit corresponds to a single electron in a particular state. Together with his colleagues, Wieck used the trajectories of an electron through two closely spaced channels for encoding. In principle, two different states are possible: the electron either moves in the upper channel or in the lower channel -- which would then only form a binary system again. According to quantum theory, however, a particle can be in several states simultaneously, that is, it can quasi fly through both channels at the same time. These overlapping states can form an extensive alphabet of data processing.

A recipe for qubits

In order to generate quantum bits with different states, the researchers allowed individual electrons to interfere with each other. This works with the so-called Aharonov-Bohm effect: powered by an external voltage, the electrons fly through a semiconducting solid. Within this solid, their trajectory is first forked and then reunited. Thus, each electron flies simultaneously on both possible paths. When the two paths come together again, there is interference, i.e., the two electron waves overlap and quantum bits with different overlapping states are generated.

Controlling electrons on defined paths

Normally, an electron wave moves through a solid body on many different paths at the same time. Due to impurities in the material, it loses its phase information and thus its ability to encode a particular state. To maintain the phase information, the researchers at the RUB grew a high-purity gallium arsenide crystal and used a dual channel proposed by Wieck more than 20 years ago.......

http://www.sciencedaily.com/releases/2012/03/120321142903.htm

What a handsome figure of a dragon. No wonder I fall madly in love with the Alani Dragon now, the avatar, it's a gorgeous dragon picture.
Back to Top
TheAlaniDragonRising View Drop Down
AE Moderator
AE Moderator
Avatar
Spam Fighter

Joined: 09-May-2011
Online Status: Offline
Posts: 6084
  Quote TheAlaniDragonRising Quote  Post ReplyReply Direct Link To This Post Posted: 22-Mar-2012 at 16:44

Quantum Plasmons Demonstrated in Atomic-Scale Nanoparticles

A series of electron micrographs of silver nanospheres of between two and ten nanometers in diameter. Individual atoms are visible within the particles.

Addressing a half-decade-old debate, engineers at Stanford have positively identified the presence of plasmons, the collective oscillations of electrons, in individual metal particles as small as one nanometer in diameter. The discovery could impact nanotechnology.

The physical phenomenon of plasmon resonances in small metal particles has been apparent for centuries. They are visible in the vibrant hues of the great stained-glass windows of the world. More recently, plasmon resonances have been used by engineers to develop new, light-activated cancer treatments and to enhance light absorption in photovoltaics and photocatalysis.

"The stained-glass windows of Notre Dame Cathedral and Stanford Chapel derive their color from metal nanoparticles embedded in the glass. When the windows are illuminated, the nanoparticles scatter specific colors depending on the particle's size and geometry " said Jennifer Dionne, an assistant professor of materials science and engineering at Stanford and the senior author of a new paper on plasmon resonances to be published in the journal Nature.

In the study, the team of engineers report the direct observation of plasmon resonances in individual metal particles measuring down to one nanometer in diameter, just a few atoms across.

"Plasmon resonances at these scales are poorly understood," said Jonathan Scholl, a doctoral candidate in Dionne's lab and first author of the paper. "So, this class of quantum-sized metal nanoparticles has gone largely under-utilized. Exploring their size-dependent nature could open up some interesting applications at the nanoscale."

The research could lead to novel electronic or photonic devices based on excitation and detection of plasmons in these extremely small particles, the engineers said.

"Alternatively, there could be opportunities in catalysis, quantum optics, and bio-imaging and therapeutics," added Dionne.......

http://www.sciencedaily.com/releases/2012/03/120321143017.htm

What a handsome figure of a dragon. No wonder I fall madly in love with the Alani Dragon now, the avatar, it's a gorgeous dragon picture.
Back to Top
TheAlaniDragonRising View Drop Down
AE Moderator
AE Moderator
Avatar
Spam Fighter

Joined: 09-May-2011
Online Status: Offline
Posts: 6084
  Quote TheAlaniDragonRising Quote  Post ReplyReply Direct Link To This Post Posted: 22-Mar-2012 at 16:50

New Technique Lets Scientists Peer Within Nanoparticles, See Atomic Structure in 3-D

undefined
Inside a gold nanoparticle. Jianwei Miao and colleagues have developed an electron tomography method to image the 3-D structure of a gold nanoparticle at a resolution of 2.4 angstroms. Individual atoms are observed in some regions of the particle and several grains are identified in three dimensions. In the figure, the four three-dimensional grains (green and gold; blue and red) form two pairs of twin boundaries inside the nanoparticle.

UCLA researchers are now able to peer deep within the world's tiniest structures to create three-dimensional images of individual atoms and their positions. Their research, published March 22 in the journal Nature, presents a new method for directly measuring the atomic structure of nanomaterials.

"This is the first experiment where we can directly see local structures in three dimensions at atomic-scale resolution -- that's never been done before," said Jianwei (John) Miao, a professor of physics and astronomy and a researcher with the California NanoSystems Institute (CNSI) at UCLA.

Miao and his colleagues used a scanning transmission electron microscope to sweep a narrow beam of high-energy electrons over a tiny gold particle only 10 nanometers in diameter (almost 1,000 times smaller than a red blood cell). The nanoparticle contained tens of thousands of individual gold atoms, each about a million times smaller than the width of a human hair. These atoms interact with the electrons passing through the sample, casting shadows that hold information about the nanoparticle's interior structure onto a detector below the microscope.

Miao's team discovered that by taking measurements at 69 different angles, they could combine the data gleaned from each individual shadow into a 3-D reconstruction of the interior of the nanoparticle. Using this method, which is known as electron tomography, Miao's team was able to directly see individual atoms and how they were positioned inside the specific gold nanoparticle.

Presently, X-ray crystallography is the primary method for visualizing 3-D molecular structures at atomic resolutions. However, this method involves measuring many nearly identical samples and averaging the results. X-ray crystallography typically takes an average across trillions of molecules, which causes some information to get lost in the process, Miao said.

"It is like averaging together everyone on Earth to get an idea of what a human being looks like -- you completely miss the unique characteristics of each individual," he said.

X-ray crystallography is a powerful technique for revealing the structure of perfect crystals, which are materials with an unbroken honeycomb of perfectly spaced atoms lined up as neatly as books on a shelf. Yet most structures existing in nature are non-crystalline, with structures far less ordered than their crystalline counterparts -- picture a rock concert mosh pit rather than soldiers on parade.......

http://www.sciencedaily.com/releases/2012/03/120322100419.htm

What a handsome figure of a dragon. No wonder I fall madly in love with the Alani Dragon now, the avatar, it's a gorgeous dragon picture.
Back to Top
TheAlaniDragonRising View Drop Down
AE Moderator
AE Moderator
Avatar
Spam Fighter

Joined: 09-May-2011
Online Status: Offline
Posts: 6084
  Quote TheAlaniDragonRising Quote  Post ReplyReply Direct Link To This Post Posted: 22-Mar-2012 at 16:57

Runner's High Motivated the Evolution of Exercise, Research Suggests

undefined
Runners. Researchers say that endocannabinoids motivated the evolution of exercise.

In the last century something unexpected happened: humans became sedentary. We traded in our active lifestyles for a more immobile existence. But these were not the conditions under which we evolved. David Raichlen from the University of Arizona, USA, explains that our hunter-gatherer predecessors were long-distance endurance athletes. 'Aerobic activity has played a role in the evolution of lots of different systems in the human body, which may explain why aerobic exercise seems to be so good for us', says Raichlen. However, he points out that testing the hypothesis that we evolved for high-endurance performance is problematic, because most other mammalian endurance athletes are quadrupedal.

'So we got interested in the brain as a way to look at whether evolution generated exercise behaviours in humans through motivation pathways', says Raichlen.

Explaining that most human athletes experience the infamous 'runner's high' after exertion, which is caused by endocanabinoid signalling in the so-called 'reward centres' of the brain, Raichlen adds little was known about the role of endocanabinoids in the other aerobically active mammals. So, he teamed up with Gregory Gerdeman and other colleagues to find out how exercise influences the endocanabinoid levels of two mammalian natural athletes – humans and dogs – and a low activity species – ferrets. The team publish their discovery that animals that evolved for endurance exercise benefit from endocanabinoids while animals that did not don't experience the pleasures, leading them to propose that natural selection used the endocanabinoid system to motivate endurance exercise in humans. The team publishes their discovery in The Journal of Experimental Biology.

Recruiting recreational runners and pet dogs from the local community, Raichlen and Adam Foster trained the participants to run and walk on a treadmill and collected blood samples from the participants before and after the exercise. Unfortunately, the ferrets were less cooperative, so the team collected the ferrets' blood samples after exercise and during rest.

Next, Andrea Giuffrida and Alexandre Seillier analysed the endocanabinoid levels in the blood samples and found that the concentration of one endocanabinoid – anandamide – rocketed in the blood of the dogs and humans after a brisk run. And when the team tested the human runners' state of mind, they found that they athletes were much happier after the exercise. However, when the team analysed the ferrets' blood samples, the animal's anandamide levels did not increase during exercise. They did not produce endocanabinoids in response to high-intensity exercise......

http://www.sciencedaily.com/releases/2012/03/120322100307.htm

What a handsome figure of a dragon. No wonder I fall madly in love with the Alani Dragon now, the avatar, it's a gorgeous dragon picture.
Back to Top
TheAlaniDragonRising View Drop Down
AE Moderator
AE Moderator
Avatar
Spam Fighter

Joined: 09-May-2011
Online Status: Offline
Posts: 6084
  Quote TheAlaniDragonRising Quote  Post ReplyReply Direct Link To This Post Posted: 22-Mar-2012 at 17:02

Dawn Sees New Surface Features On Giant Asteroid Vesta

Bright Rays from Canuleia Crater: In this image from NASA's Dawn spacecraft, bright material extends out from the crater Canuleia on Vesta.

NASA's Dawn spacecraft has revealed unexpected details on the surface of the giant asteroid Vesta. New images and data highlight the diversity of Vesta's surface and reveal unusual geologic features, some of which were never previously seen on asteroids.

These results were discussed March 21, 2012 at the Lunar and Planetary Science Conference at The Woodlands, Texas.

Vesta is one of the brightest objects in the solar system and the only asteroid in the so-called main belt between Mars and Jupiter visible to the naked eye from Earth. Dawn has found that some areas on Vesta can be nearly twice as bright as others, revealing clues about the asteroid's history.

"Our analysis finds this bright material originates from Vesta and has undergone little change since the formation of Vesta over 4 billion years ago," said Jian-Yang Li, a Dawn participating scientist at the University of Maryland, College Park. "We're eager to learn more about what minerals make up this material and how the present Vesta surface came to be."

Bright areas appear everywhere on Vesta but are most predominant in and around craters. The areas vary from several hundred feet to around 10 miles (16 kilometers) across. Rocks crashing into the surface of Vesta seem to have exposed and spread this bright material. This impact process may have mixed the bright material with darker surface material.

While scientists had seen some brightness variations in previous images of Vesta from NASA's Hubble Space Telescope, Dawn scientists also did not expect such a wide variety of distinct dark deposits across its surface. The dark materials on Vesta can appear dark gray, brown and red. They sometimes appear as small, well-defined deposits around impact craters. They also can appear as larger regional deposits, like those surrounding the impact craters scientists have nicknamed the "snowman."

"One of the surprises was the dark material is not randomly distributed," said David Williams, a Dawn participating scientist at Arizona State University, Tempe. "This suggests underlying geology determines where it occurs."......

http://www.sciencedaily.com/releases/2012/03/120321204744.htm

What a handsome figure of a dragon. No wonder I fall madly in love with the Alani Dragon now, the avatar, it's a gorgeous dragon picture.
Back to Top
 Post Reply Post Reply Page  <1 6465666768 348>

Forum Jump Forum Permissions View Drop Down

Bulletin Board Software by Web Wiz Forums® version 9.56a [Free Express Edition]
Copyright ©2001-2009 Web Wiz

This page was generated in 0.258 seconds.